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ABSTRACT

The image quality obtained using laser guide star adaptive optics (LGS AO) is degraded by the fact that the
wavefront aberrations experienced by light from the LGS and from the science object differ. In this paper we
derive an analytic expression for the variance of the difference between the two wavefronts as a function of angular
distance between the LGS and the science object. This error is a combination of focal anisoplanatism and angular
anisoplanatism. We show that the wavefront error introduced by observing a science object displaced from the
guide star is smaller for LGS AO systems than for natural guide star AO systems.

1. INTRODUCTION

Natural guide star adaptive optics (NGS AO) systems have found widespread use in astronomy to compensate
for the blurring due to atmospheric turbulence.1 NGS AO suffers from two fundamental limitations. First, a
sufficiently bright guide star is needed to measure the wavefront. Second, the image quality of the science target
degrades with increasing distance from the guide star, an effect known as angular anisoplanatism.2 Laser guide
star (LGS) AO systems circumvent the need for a bright NGS by creating an artificial star anywhere in the sky.
Since the LGS cannot be used to measure wavefront tip-tilt and absolute focus, an NGS is still needed to make
those measurements. However, the requirements on the magnitude of the guide star are greatly relaxed, since
light from the whole aperture can be used to measure tip-tilt and the focus measurements can be made at a
much lower bandwidth.

In LGS AO, there are three sources of anisoplanatism. Angular anisokinetism, also known as tip-tilt angular
anisoplanatism,3 stems from the difference between the tip-tilt component of the wavefronts of the tip-tilt guide
star and the science object. Focal anisoplanatism, also known as the cone effect, occurs because the LGS samples
the cone of turbulence between the LGS and the telescope, while the turbulence experienced by the science object
is distributed in a cylinder between itself and the telescope. Finally, angular anisoplanatism results from the
difference in the wavefront terms of higher order than tip-tilt between LGS and the science object. Since the
LGS can be placed anywhere on the sky, including at the same location in the sky as the science object, this
error term is not fundamental. However, in practice there are usually multiple or extended objects in the field.
Focal and angular anisoplanatism are intrinsically linked in LGS AO, since the wavefront sensor measures the
cone of turbulence offset by an angle (which may be zero) from the cyclinder of turbulence blurring the science
object. The remainder of this paper develops and evaluates the analytic expression for the isoplanatic errors due
to a combination of focal and angular isoplanatism and compares it to the NGS AO isoplanatic error.

2. ANALYTIC EXPRESSION FOR THE LGS ANISOPLANATIC ERROR

In this section, we develop an expression for the sum of the angular and focal anisoplanatic error by propagating
transverse spectral filter functions through turbulence.4 This approach has previously been used to find the errors
due to LGS AO focal anisoplanatism,3 anisokinetism3 and focal anisokinetism.5 A very complicated expression
for the LGS isoplanatic error, analogous to the NGS isoplanatic error, was developed by Tyler by means of
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structure function calculations.6 Here, we develop a simple relationship for LGS anisoplanatism using aperture
filter functions. We want to find the aperture-averaged phase variance that results from subtracting the piston
and tip-tilt removed phase of an LGS with the piston and tip-tilt removed phase of a star offset by angle θ from
the LGS.

Using the analytic approach developed by Sasiela and Shelton7 and neglecting diffraction, the wavefront
phase error variance, σφ

2, can be written as

σφ
2 = 0.2073k2

∫

∞

0

C2
n(z)

(
∫

f(κ)h(κ, z)dκ

)

dz, (1)

where k = 2π/λ is the wavenumber, λ the wavelength, C2
n(z) is the refractive index structure constant at height

z, and κ = (κ cos(α), κ sin(α)) is the spatial frequency domain coordinate. Bold face symbols are used in this
paper to define two-dimensional variables, with the corresponding regular font symbol representing the amplitude
and α the angle coordinate.

We assume a Kolmogorov turbulence power spectrum given by f(κ) = κ−11/3. The final term in Eq. (1),
g(κ, z), is the aperture filter function in the pupil plane, unique to each problem. We wish to find the squared
value of the difference in a quantity between the LGS at height L and an NGS at infinity offset by angle θ.
Neglecting diffraction, h(κ, z), for this problem is given by4

h(κ, z) = |G(γ1κ) − G(γ2κ) exp[iγ2κ · θz]|
2
. (2)

The propagation parameter γ describes the weighting due to the convergence of the wave. For plane waves,
γ2 = 1, while for a diverging source located at height L, γ1 = 1−z/L.4 The filter function, G(γκ), is the Fourier
transform of the aperture function which converts the phase at the aperture into a quantity of interest. If the
quantity of interest is the phase, then4

Gφ(γκ,ρ) = exp[iγκ · ρ], (3)

where the subscript φ denotes that the quantity of interest is the phase. There is a dependency on the aperture
coordinate, ρ, which we will eliminated later by averaging the phase variance over the whole aperture.

The filter functions for piston and tip-tilt are

GP(γκ) =
2J1[γκD/2]

γκD/2
(4)

and

GT(γκ) =
4J2[γκD/2]

γκD/2
(5)

respectively.4

Evaluating the difference between the phase of a star offset by angle θ from the LGS as a function of position
in the aperture, we obtain

hφ(κ,ρ, z) = |exp[iκ · ρ(1 − z/L)] − exp[i(κ · ρ + κ · θz)]|
2

= 2(1 − cos[κ · ρz/L + κ · θz])

= 2(1 − cos[κ · ρz/L] cos[κ · θz] + sin[κ · ρz/L] sin[κ · θz]). (6)

The last term has a sinusoidal dependence on aperture position. If the aperture is symmetric about the center,
then this term averages to zero. The aperture average of the remaining terms is

hφ(κ, z) =
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The aperture averaged filter function is inserted into Eq. (1) to obtain

σφ
2 = 0.4146k2
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0

dzC2
n(z)

∫
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κzD

2L
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cos [κ · θz]

)

. (8)

Performing the angular integration by replacing
∫

dκ with 2π
∫

κdκ and converting the cosine into a Bessel
function of the first kind of order zero, we obtain

σφ
2 = 2.606k2
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0
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n(z)
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J0 [κθz]

)

. (9)

Eq. (9) is the phase variance due to LGS anisoplanatism. However, the piston and the tip-tilt components of
the LGS anisoplanatism do not affect image quality since those components are not measured using the LGS.
Hence, we would like to obtain an expression for the piston and tip-tilt removed phase variance.

The filter function for the squared difference in piston between an LGS and an NGS offset by angle θ is

hP(κ, z) =

∣

∣

∣

∣

2J1[(1 − z/L)κD/2]

(1 − z/L)κD/2
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∣

∣

∣

∣

2

. (10)

Note that this expression does not need to be integrated over the aperture since the coefficients of the Zernike
polynomials are, by definition, quantities integrated over the whole aperture. For compactness of notation, we
write a = κD/2 and b = (1 − z/L)κD/2. Then
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We can repeat this process using the tip-tilt filter function:

hT(κ, z) =
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. (12)

It follows that the tip-tilt phase variance is
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The effective LGS anisoplanatism is found by subtracting the piston and tip-tilt variance, Eqs. (13) and (11),
from the total phase variance given in Eq. (9):

σEFF = σ2
φ − σ2

P − σ2
T . (14)

Focal anisoplanatism is calculated simply by setting θ = 0 in the expression in Eq. (14). Tip-tilt focal anisopla-
natism, obtained by setting θ = 0 in the Eq. (13), is a limitation to using a laser guide star to extract tip-tilt
information.5



For completeness, we state the expressions for the NGS anisoplanatism used in Sect. 3. We can think of NGS
anisoplanatism as a special case of LGS anisoplanatism where the distance to the guide star is set to L = ∞.
The relationship

lim
x→∞

xJ1(x
−1) = 1/2 (15)

is used to simplify the Eq. (9). The NGS total phase variance is then

σ2
φ,NGS = 2.606k2

∫ L

0

dzC2
n(z)

∫

∞

0

dκκ−8/3 (1 − J0[κθz]) . (16)

The effective variance due to NGS anisoplanatism is obtained by subtracting the piston component from Eq.
(16):

σ2
EFF,NGS = σ2

φ,NGS − σ2
P,NGS, (17)

where
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0
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Finally, the NGS anisokinetism, which is the tip-tilt component of the NGS anisoplanatism, is given by

σ2
T,NGS = 2.606k2

0
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a

)2
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This expression is very important since the anisoplanatic degradation in the tip-tilt correction as the angle from
the tip-tilt guide star increases is the fundamental limit to the sky coverage attainable in LGS AO using a single
tip-tilt guide star.

3. NUMERICAL CALCULATION OF THE LGS ANISOPLANATIC ERROR

In this section, we calculate numerical values for anisoplanatism for the case of the NGS and LGS AO systems
on the D = 10 m Keck II telescope at the W. M. Keck Observatory8–10 using measured Mauna Kea turbulence
profiles. The sodium layer LGS is centered at a height approximately L = 86000 above the telescope. We use the
mean of the four SCIDAR profiles presented in Tokovinin et al.11 and displayed in Table 1 in the calculations
that follow. Figure 1 displays the reduction in K-band (2.12µm) Strehl ratio, S, due to LGS anisoplanatism

Height (m) 500 1000 2000 4000 8000 16000

Cn
2 (×10−14m−1/3) 2.400 1.575 1.475 3.025 4.575 2.325

Table 1. Turbulence profiles used in the calculations

as a function of distance from the LGS, obtained by evaluating Eq. (14) and using the extended Maréchal
approximation, S = exp[−σEFF

2]. The LGS anisoplanatism when the science object coincides with the LGS is
due to focal anisoplanatism. The RMS wavefront error due to focal anisoplanatism was calculated to be 178 nm,
which is similar to the value, 177 nm, calculated using Eq. (7.35) in Hardy.1

The reduction in K-band Strehl due to both the NGS anisokinetism and anisoplanatism is plotted in Fig. 2.
The figure clearly illustrates that the isokinetic patch is considerably greater than the isoplanatic patch.

The component of the error due to the angular offset alone is calculated by subtracting the focal anisoplanatic
contribution from the piston and tip-tilt removed anisoplanatic error. This term, which we call LGS angular
anisoplanatism, is plotted in Fig. 3. We also plot the sum of the LGS angular anisoplanatism and the NGS
anisokinetism, calculated using Eq. (19), since this represents the common scenario where the laser sits on top
of the tip-tilt star. This is compared to the effective NGS angular anisoplanatism computed using Eq. (17).

For small angular offsets, the degradation in Strehl ratio due to anisoplanatism is much smaller if an LGS is
used rather than an NGS. At a distance of 60 arcsec, however, the sum of the LGS anisoplanatism and the NGS
anisokinetism is the same as the NGS anisoplanatism.



Figure 1. Reduction in K-band Strehl ratio due to LGS anisoplanatism (σ2

EFF) as a function of angular distance from
the LGS for the Mauna Kea turbulence profile.

Figure 2. Reduction in K-band Strehl ratio due to, from top to bottom: NGS anisokinetism (σ2

T,NGS) and NGS isopla-
natism (σ2

EFF,NGS) as a function of angular distance from the guide star for the Mauna Kea turbulence profile.

4. EXPERIMENTAL RESULTS

Several experiments were attempted on the sky to measure the anisoplanatic and anisokinetic degradation.
Unfortunately, bad weather or bad and variable seeing hampered our attempts to measure this on numerous
occasions. In this section, we report the techniques to measure these quantities and the measurements that we
have obtained. The measurements were made using the W. M. Keck Observatory LGS AO system on the 10-m
Keck II telescope.9,10

4.1. LGS Angular Anisoplanatism

The LGS angular anisoplanatism was measured in the following manner. A 10-mag star was acquired as a tip-tilt
reference. The laser was then projected on axis, all the loops were closed and images of the tip-tilt star were



Figure 3. Reduction in K-band Strehl ratio due to, from top to bottom: LGS angular anisoplanatism (σ2

EFF − σ
2

EFF(0)),
LGS angular anisoplanatism plus NGS anisokinetism (σ2

EFF−σ
2

EFF(0)+σ
2

T,NGS), NGS angular anisoplanatism (σ2

EFF,NGS)

.

taken through a Brackett γ filter (2.17µm) using the NIRC2 infrared camera. The position of the LGS was moved
on the sky by simultaneously moving the field steering mirrors in front of the wavefront sensor and offsetting
the pointing of the laser. Images of the tip-tilt guide star, which remained on axis, were captured for several
different positions of the laser.

The Strehl ratio of images captured on June 30, 2005 (UT) was measured using Method 7 in Roberts et al 12

and plotted in Fig. 4. We overplot the theoretical curve, S = 0.45 exp[−σ2
EFF], using all the Cn

2 values of the
turbulence profiles in Table 1 were divided by 2.5 to fit the Strehl ratio measurements. It can be seen that there
is good agreement between the measured and the theoretical curves. The measured point-spread functions are
displayed in Fig. 5.

Figure 4. K-band Strehl ratio measured by moving the laser off axis. The data points represent measured values and
the solid line is a best fit line using a turbulence profile with the same structure as Table 1.



Figure 5. K-band point-spread functions measured by moving the laser (a) on axis, (b) 15 arcsec off axis, (c) 23 arcsec
off axis

4.2. NGS Angular Anisoplanatism

We measured the NGS AO angular anisoplanatism on the Wild Duck Cluster, M11, on September 10, 2005
(UT). The tip-tilt and deformable mirror loops were closed on a 11-mag star and K’ (2.12µm) images were
taken. Then the telescope was offset to four other stars in the cluster with the loops still closed on the same
star and more images were taken. The Strehl results are displayed in Fig. 6. We also had at our disposal
simultaneous turbulence profiles using the multi-aperture scintillation sensor (MASS) from the TMT site seeing
characterization campaign,13 tabulated in Table 2. The MASS instrument is not very sensitive to low-altitude
turbulence, but this is not very important since anisoplanatism is dominated by high-altitude turbulence. We

Height (m) 500 1000 2000 4000 8000 16000

Cn
2 (×10−14m−1/3) 0.000 0.000 0.000 0.312 6.940 0.700

Table 2. Turbulence profiles measured using the MASS instrument

overplot the theoretical image degradation, S = 0.49 exp[−σ2
EFF,NGS]. There is a very good fit between the

measured turbulence profile and image quality. The image degradation is more benign than expected at large
distances from the NGS due to the fact that the extended Maréchal approximation underestimates the Strehl
ratio for large phase errors because it does not take into account the spatial correlation of the phase.

5. CONCLUSION

This paper presents an analytic expression for LGS AO anisoplanatism that can easily be solved using a standard
mathematical software package. The focal and angular anisoplanatism in LGS AO are intrinsically linked and
must be calculated together. If one subtracts the contribution due to focal anisoplanatism from this expression,
one finds that the image degradation as the distance between the science object and the guide star increases is less
severe for LGS AO than for NGS AO. In future work, we hope to obtain more anisoplanatism and anisokinetism
measurements and compare them with theoretical predictions using measured turbulence profiles from the MASS
instrument.
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