AO Working Group: Planning for Next-Generation Adaptive Optics at Keck

Claire Max
on behalf of Keck AO Working Group
Antonin Bouchez (Caltech), Rich Dekany (Caltech), David Koo (UCSC), Mike Liu (UH), Bruce Macintosh (LLNL), Franck Marchis (UCB), Keith Matthews (Caltech)
Outline

• External landscape

• Strategic planning:
 - What should next-generation AO system look like:
 - High Strehl over narrow field? (narrow-field AO)
 - Moderate Strehl over wider field? (MCAO)
 - High Strehl over multiple narrow fields (MOAO)

• Next steps

We want to work closely with the science community (you) to compare science cases for the future AO options
External landscape

• HST is possibly/probably going to die in 3-5 years
 - After that, Keck AO would be the best high resolution system available.

• In the optical, Keck could deliver 4x the resolution as HST
 - Currently does this in the IR
 - Want to consider pros and cons of visible AO at Keck

• Laser technology is making significant strides
 - Lasers for Gemini MCAO and Keck 1 are being built today
 - Laser for optical AO exists at Starfire Optical Range

• TMT is a long way in the future
 - There is ample time for at least one next-generation Keck AO system
 - Even once TMT is operational, Keck with AO will play crucial role

• For planetary science, next-generation Keck AO will happen a lot sooner than any new space missions (except Moon-Mars!)
Work has been proceeding on KPAO: Keck Precision AO

- Chris Neyman, Ralf Flicker
- Selected for study by AOWG in its strategic plan, 2002
- “Tomography Engine”: Use multiple laser guide stars to reconstruct 3D atmosphere
- Basis of ANY future AO: corrects for cone effect, info about multiple lines of sight
- Original concept: High level of AO correction, narrow FOV, some correction in optical (KPAO)
Potential synergy between KPAO and wider-field AO options

KPAO
Narrow FOV
High IR Strehl
Visible capability

KPAO will measure turbulence using multiple laser guide stars and tomography

Wide field AO can use these meas’ts to correct atmosphere

Multi-Conjugate AO
~2’ FOV
Multiple DMs
Moderate IR Strehl

Multi-Object AO, ~7’ field of regard
Many small AO postage stamps within field of regard (MEMS)
High Strehl in IR
Recent developments have lead to reconsideration of Science Case

- Since previous strategic plan, we’ve learned a LOT more about tomography (CfAO, TMT analysis, simulations)

- KPAO as potential “tomography front end” for:
 1. Narrow-field high-Strehl (original concept): one IFU
 2. Multi-object AO: deployable MEMS AO systems with their own IFUs
 3. Multi-Conjugate AO: AO correction over whole (wide) field, deployable IFUs

- We want to consider science case (cost-benefit) for these three concepts
Previous strategic plan

√ Complete
√ In progress
G Went to Gemini

- 80 Keck AO papers to date (!)
- 8 laser guide star science papers published or submitted in the past 6 months

Should KPAO be narrow field? Should it feed a wide field system?
KPAO as originally conceived would have important capabilities in the visible
Zero’th cut at science case, narrow-field vs. wide-field

Preference

- Solar System: narrow field
- Galactic: narrow field
- Planet detection: narrow field
- Extragalactic: it depends....

- The following slides will give examples
Planetary Science: narrow-field KPAO seems the most promising technology

Jovian moons, asteroids, trans-neptunian objects are small enough to fit into KPAO’s field of view
KPAO in visible has high potential for asteroids, TNO’s

Volcanism: variable phenomenon
- Io
- Triton
- Enceladus

Cryo-volcanoes?
Example: What is the diversity of planetary systems?

- Imaging dusty circumstellar disks
- Disk sub-structure tells about the planet formation process.
- Low-mass planets too faint to directly image can be studied by the dynamical signatures they produce in the dust.
- Multi-wavelength optical + IR colors tell us about grain growth.
- KPAO AO @ I-band will resolve 0.1-0.5 AU scales for nearby stars.
KPAO: better orbits for stars around Galactic Ctr ⇒ General Relativity

- Confusion limited field: best photometry at highest Strehl
- Astrometry: in principle better with wider field, but in this case can get joint solution for many stars within narrow field
Extragalactic astronomy: a complex tradeoff between wide field and narrow field

• Examples of some science cases, in order of distance from us:
 - Cores of nearby AGNs
 - Nearby dwarf galaxies
 - Stellar populations in galaxies out to Virgo cluster
 - Quasar host galaxies
 - High-redshift supernovae
 - Evolution of high-z galaxies (small and faint, red-shifted)
 - Dynamical masses
 - Metallicity history
 - Star formation rate
 - Merger history
 - Lyman α clouds around young (high-z) galaxies

• Each has different considerations for optimal AO system.

• Examples to follow.
Stellar populations in confusion limit: narrow field, high Strehl AO preferred

- Photometry in confusion limit favors high Strehl
- Advantage of V-band in constructing color-magnitude diagrams
- Examples for 30 m telescope studies (stellar evolutionary tracks from Olsen et al.):
NGS AO

GOODS-N 1%

LGS AO

GOODS-N 15%

MCAO AO

GOODS-N 35%

MOAO AO

Metallicity Gradients

Star Formation Rates

Velocity Kinematics

z=1 Galaxy

HII region
Super Nova?

Bulge

Spiral Arm

0.5"

Note: Sauron Data from local galaxies, de Zeeuw et al. 2002
Photometric accuracy: a key issue

- Two science examples:
 - Color-magnitude diagrams to determine stellar ages and metallicities
 - Photometric redshifts
- Accurate photometry means you must know your PSF, and it must be **stable**
- Simulation for TMT by Brent Ellerbroek: stability advantage for 2 or more DMs
- We need to examine PSF stability for Keck (10m instead of 30m) and for KPAO
Astrometry and AO

• **Science examples:**
 - Proper motions for Galactic Center stars
 - Proper motions of stars in rest of Galaxy
 - Apparent proper motions due to gravitational microlensing
 - Planet detection (in conjunction with other methods)

• 1 mas/year = 4.5 km/s at 1kpc. Many applications need to do better than this.

• **Rule of thumb** has been that you can centroid an image to accuracy given by FWHM / signal to noise ratio.
 - AO should help with both, for point sources
 - But we don’t know if AO has in fact been able to stay on this curve
Science instruments need thought

• KPAO:
 - OSIRIS could provide a first-generation IFU instrument; ideally would want an IFU with a larger field of view
 - Consider rebuilding NIRC2 camera (too high a wavefront error)
 - To take advantage of performance in the visible, would need new back-end instrument

• MCAO
 - Spectroscopy: deployable IFUs to take advantage of wide field
 - Imaging: needs a wide field camera

• MOAO
 - Multiple AO-IFUs
 - Select targets based on seeing-limited images
Next Steps

• Form mini working-groups, flesh out a few key science cases and compare different AO implementations
 - Both astronomers and AO folks are needed
 - Simulations and “data analysis” needed. Examples:
 - How well can you recover a color-magnitude diagram?
 - How well can you do astrometry?
 - What is the PSF stability for narrow-field high-Strehl AO, compared with MCAO or MOAO?
 - How crucial is visible-light AO for the science?

• AO Working Group will digest results, discuss with CARA and the community, report back to Keck Science Steering Committee

If you think you might be interested in participating, please talk to me or Peter Wizinowich or Chris Neyman. We need your input!
Multiplexing: surface density of targets (from Gemini study)

<table>
<thead>
<tr>
<th>Object class</th>
<th>N/arcmin2</th>
</tr>
</thead>
<tbody>
<tr>
<td>All galaxies (K<20)</td>
<td>10</td>
</tr>
<tr>
<td>HDF Irr (z=0.5-1)</td>
<td>5-6</td>
</tr>
<tr>
<td>Lyman break gals (R<25)</td>
<td>3</td>
</tr>
<tr>
<td>Gravitational lens arcs</td>
<td>10</td>
</tr>
<tr>
<td>Super star clusters (B<23)</td>
<td>10</td>
</tr>
<tr>
<td>Orion stars M<0.1 M_{sun}</td>
<td>2</td>
</tr>
<tr>
<td>T-Tauri stars</td>
<td>0.1</td>
</tr>
<tr>
<td>Proplyds/microjets in Orion</td>
<td>1</td>
</tr>
</tbody>
</table>

Extragalactic survey work: $N \sim 5 - 10$. Implies about 10 deployable IFUs in a wider field of regard.
Should we head toward wide field AO?

- Comparison of KPAO with Gemini MCAO

<table>
<thead>
<tr>
<th></th>
<th>K band</th>
<th>J band</th>
<th>8000A</th>
<th>Hα</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPAO Strehl</td>
<td>90%</td>
<td>65%</td>
<td>40%</td>
<td>22%</td>
</tr>
<tr>
<td>MCAO Strehl</td>
<td>60%</td>
<td>20%</td>
<td>3%</td>
<td>very low</td>
</tr>
</tbody>
</table>

Table 3: MCAO and CAO compensated surface area

<table>
<thead>
<tr>
<th></th>
<th>J</th>
<th>H</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCAO FoV Diameter [arcsec]</td>
<td>90</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>CAO FoV Diameter [arcsec]</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Area gain</td>
<td>20</td>
<td>13</td>
<td>9</td>
</tr>
</tbody>
</table>
KPAO: Imaging of planets around low-mass stars and brown dwarfs

- KPAO would be able to detect $1 \, M_J$ companion to $40 \, M_J$ 10 GYr brown dwarf
- Can detect $1 \, M_J$ companion to T Tauri star @ 50 AU
- These targets are inaccessible to bright-star ExAO systems
- Only a narrow field of view is needed