Next Generation AO for the Galactic Center

Jessica Lu

Team: Andrea Ghez, Nevin Weinberg, Jessica Lu
Galactic Center

- The best and closest case of a central supermassive black hole in a normal galaxy:
 - Ghez et al. (1998) -- Velocity Dispersion; Ghez et al. (2000) -- Accelerations; Ghez et al. (2005) -- Orbits

- A unique lab for understanding galactic nuclei

Keck/UCLA Galactic Center Group
Galactic Center Science

- Is there a halo of dark matter or compact remnants surrounding the black hole?
- What is the distance to the Galactic center (R_0)?
- Can we test post-Newtonian physics (e.g. general relativity, black hole spin)?
- Where did the apparently young stars form?
- Why is the accretion flow onto the black hole so under luminous ($10^{-9} L_{Ed}$)?
Currently:
• have 8-10 stars with \(K < 16.0 \)
 with orbits.

• only diffraction limited at \(K \)
 (2.2 microns)

• limited by astrometric biases
 from undetected faint stars on
 the brighter star population
Currently:
- have 8-10 stars with $K < 16.0$ with orbits.

- only diffraction limited at K (2.2 microns)

- limited by astrometric biases from undetected faint stars on the brighter star population

Encircled: Speckle points
- $S0-24$ not detected,
- $S0-16$ biased by ~ 40 mas
Precision Stellar Dynamics

• NGAO+laser allows us to find additional (fainter) stars.

• Need high strehl J+H to increase spatial resolution and contrast.

• Need spectro-imaging to extract radial velocities in crowded region with diffuse emission.

• Astrometry: 100 µas

• Radial Velocities: ~10 km/s
Precision Stellar Dynamics

- NGAO+laser allows us to find additional (fainter) stars.

- Need high strehl J+H to increase spatial resolution and contrast.

- Need spectro-imaging to extract radial velocities in crowded region with diffuse emission.

- Astrometry: 100 µas

- Radial Velocities: ~10 km/s
Sgr A*

- Monitoring of Sgr A* is best done in the L-band (3.8 microns).

- Requires short time scale (30 sec) images of high quality

- May be able to observe orbital motion of hot spots in accretion disk:
 - photocenter shifts
 - periodic variability
NGAO Requirements

• Astrometry: 100 µas

• Radial Velocities: ~10 km/s

• Contrast: Δmag = 4 at first PSF null (radius = 55 mas in K)… or as close as we can get.

• R~ 4,000 high throughput OSIRIS (75 km/s resolution)

• 10 arcsec imager with JHKLM filters.
 • Optical distortion must be well calibrated.
 • Polarimetry mode for Sgr A* monitoring.

• May need R~15,000 capability.
Simulation Plan

• Construct faint population and orbits for all stars.

• Use simulated PSF to generate artificial images.

• Run through analysis process.
Simulation Plan

- Construct faint population and orbits for all stars.
- Use simulated PSF to generate artificial images.
- Run through analysis process.
- Characterize astrometric precision and constraints on science measurements.

\[1 \text{ pixel} = 10 \text{ mas} \]
Galactic Center Science

- Is there a halo of dark matter or compact remnants surrounding the black hole?
 Can detect 1000 Msun at 0.01 pc of extended mass distribution

- What is the distance to the Galactic center (R_o)?
 Measurable to ~0.1% accuracy.

- Can we test post-Newtonian physics (e.g. general relativity, black hole spin)?
 Measure relativistic prograde precession, and possibly frame-dragging (spin of black hole).

- Where did the apparently young stars form?
 Measure accelerations of stars out to $r=5''$... get 3D positions.

- Why is the accretion flow onto the black hole so underluminous ($10^{-9} L_{Ed}$)?
 1% photometry at HKL at mags of 19,17,14 on minute timescales. Polarimetry.