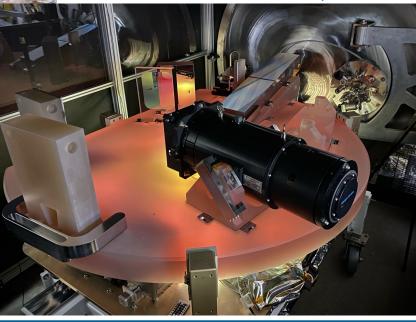
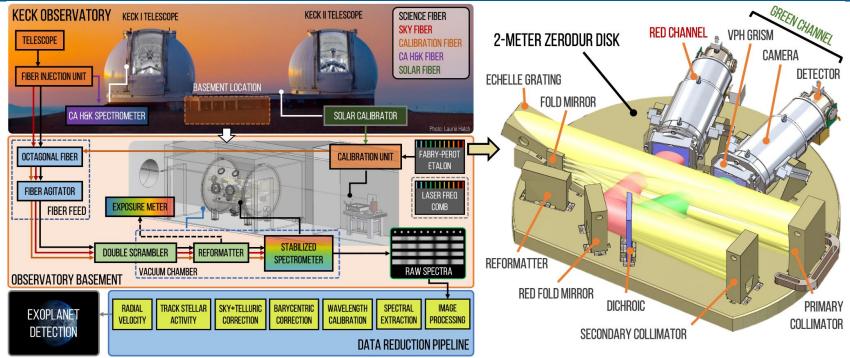


Performance and Use of the Keck Planet Finder Andrew Howard, Sam Halverson, Howard Isaacson, and Josh Walawender on behalf of the KPF Team


Keck Planet Finder

KPF team (partial) at First Light on Nov. 9, 2022


Keck Planet Finder spectrometer

KPF Instrument

Important subsystems:

- High-resolution Spectrometer
- Ca H&K Spectrometer

• Fiber Injection Unit

- Calibration System
- Chromatic Exposure Meter

Optical inputs: Science fiber: 1.14 arcsec (225 μm, octagonal cross-section)* Sky fiber: 1.14 arcsec (225 μm, octagonal cross-section), 10 arcsec separated Cal fiber: 64 μm

Wavelength coverage: 445-870 nm (primary spectrometer) + 382-402 nm (Ca H&K spectrometer)

Resolving power: R = 98k (primary spectrometer), 17k (Ca H&K spectrometer)

Sampling: 3-4 pixels/res.elem. (primary spectrometer), 3-4 pixels/res.elem. (Ca H&K spectrometer)

RV precision: systematic noise floor: 50 cm/s (requirement) and 30 cm/s (goal) photon noise: set by signal SNR; e.g., 30 cm/s in 30 min for V=10.9 G2 or V=13.2 M4 stellar variability: property of the star; can be partially mitigated, especially w/cadence

Wavelength calibration: laser frequency comb, etalon, thorium-argon, uranium-neon

Special Characteristics: Solar Calibrator, Fast-read mode (15 sec), UV spectrometer for Ca II HK, sky fiber

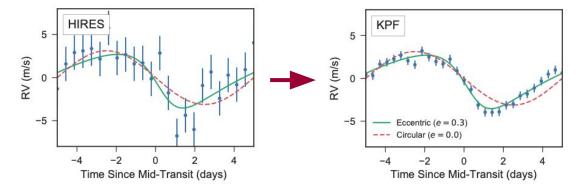
^{*} - the science fiber is optically sliced into three 64 μ m-wide slices that are offset from each other in cross-dispersion

Science Goals \rightarrow Design Drivers

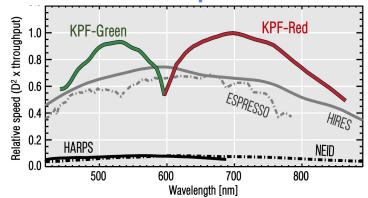
Science Goals:

- Discover and characterize exoplanets
- Measure precise planet masses and orbits

Measurement Needs


- \rightarrow High optical throughput
- \rightarrow Doppler measurement precision

Design Drivers


- **Optical efficiency**: optical design, coatings, fiber length, etc.
- Stability: material choice, optical fiber system, mechanical design, thermal design, vibration isolation, vacuum, detector choices

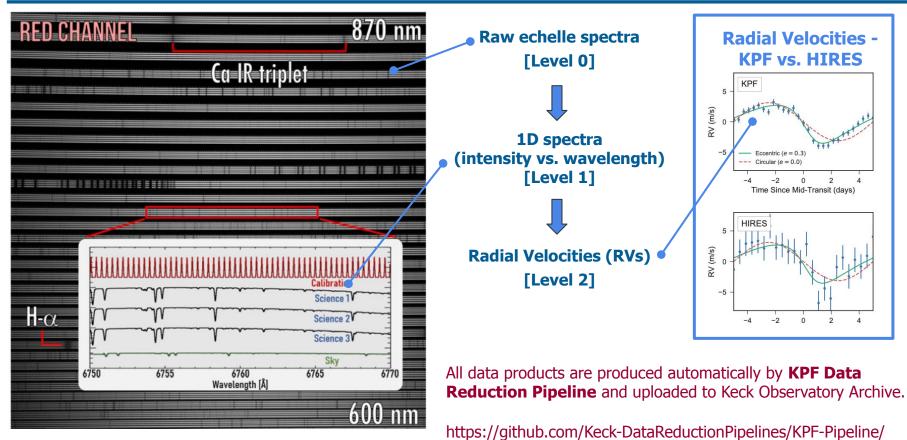
Doppler Error Budget

FIBER & ILLUMINATION: 14 CM S ⁻¹	INSTRUMENTAL: 20 CM S ⁻¹	TOTAL ERROR: 30 CM S ⁻¹	DETECTOR EFFECTS: 7 CM S ⁻¹	EXTERNAL SOURCES: 18 CM S ⁻¹
Modal noise (star + cal.)	Therm. stability (bench)	% INSTRUMENTAL ERROR	Pixel center offsets	Telescope & FIU guiding
Near + far-field scrambling	Therm. stability (gratings)	CORRECTED BY CALIBRATION: 90	Pixel inhomogeneities	ADC variation
Stray light + ghosts	Therm. stability (camera)	COMPUTATION: 18 CM S ⁻¹	Charge transfer efficiency	Focus variation
Fiber-fiber contamination	Vibrational stability	Barycentric corrections	CCD thermal expansion	Fiber injection angle
Polarization variation	Pressure stability	Calibration process	Readout thermal change	Micro-tellurics
FRD (star + calibration)	Zerodur phase change	Reduction and software	Brighter-fatter effect	Scattered sunlight

Measurement Speed of KPF

Keck Planet Finder

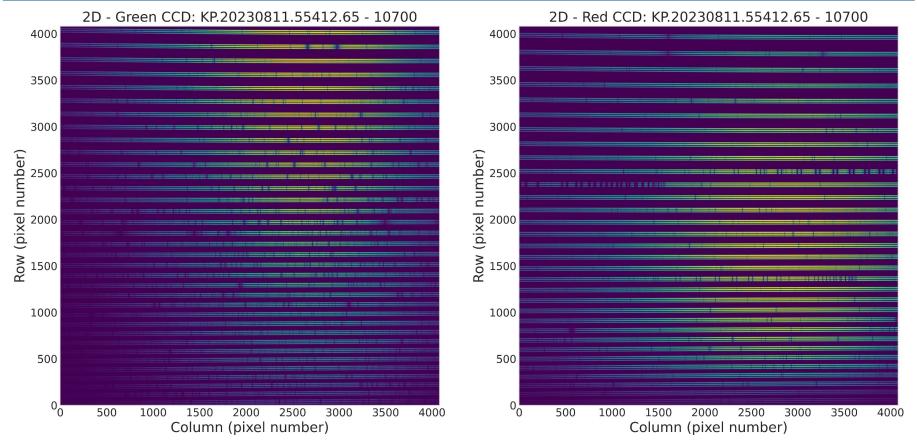
Past:


- Design, Fundraise, Test, Build 2014-2022
- **C** Ship to Hawaii, reassemble, test, and First Light (summer $2022 \rightarrow November 9, 2022)$
- □ Commissioning November 2022 ~April 2023

Current and Future:

- □ Science Observations ~April 2023+
- **Ongoing improvements to operations, DRP, specific subsystems May 2023 +**
 - DRP Improvements to wavelength solution determination, cosmic ray rejection, other issues
 - Fiber Injection Unit lab/on-sky
 - Numerous refinements to operations
- □ "Service Mission" ~3 weeks in December 2023 to February 2024 (to be scheduled)
 - Install thermal enclosure
 - Fix focus issue on edge of green CCD
 - Adjust "Reformatter" for more even slice shapes/intensities
 - Install baffling on ion pumps
 - Install precision wedge filters in calibration system for ultraprecise calibrations
 - There will be an RV offset between pre/post Service Mission data! Plan accordingly!

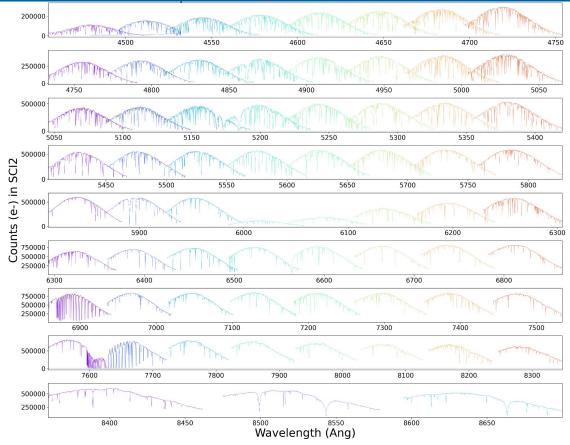
KPF Data Products: Spectra and Radial Velocities



Keck Planet Finder

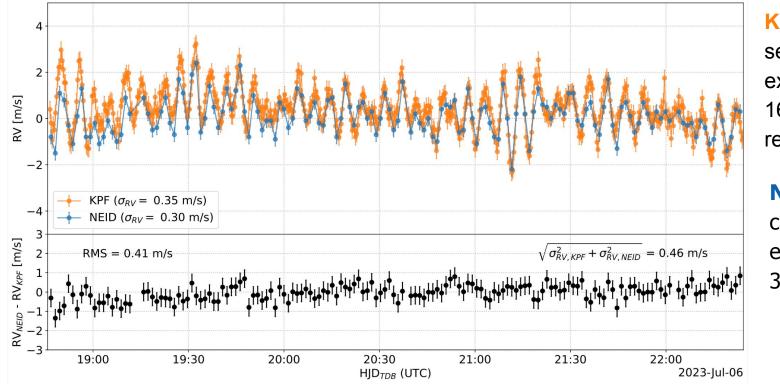
inder

KPF Data Products: Beautiful Spectra



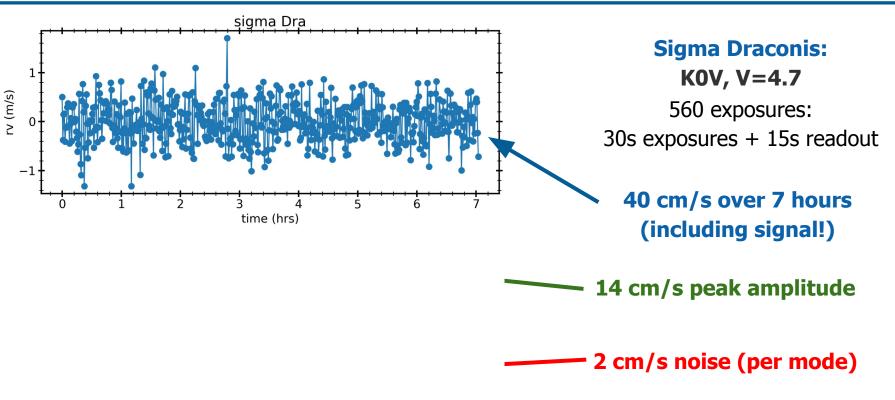
Keck Planet Finder

nder


Keck Planet Finder

ecl

Planet Finder



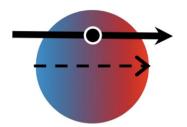
KPF + SoCal: 21 sec cadence: 5s exposures + 16 sec (!) readout

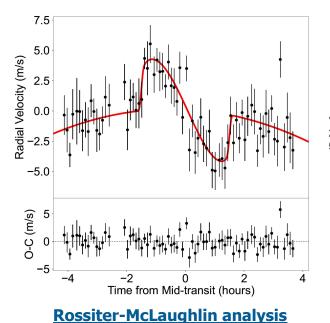
NEID: 85 sec cadence: 55s exposures + 30 sec readout

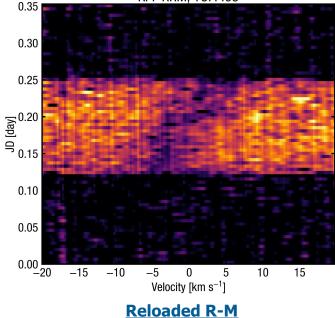
Rubenzahl et al. (in prep)

KPF Science Examples – Asteroseismology

W. M. KECK OBSERVATOR


KPF Science Examples – Stellar Obliquity




TOI-4495:

Young Planetary System with two planets

Obliquity Measurement with KPF

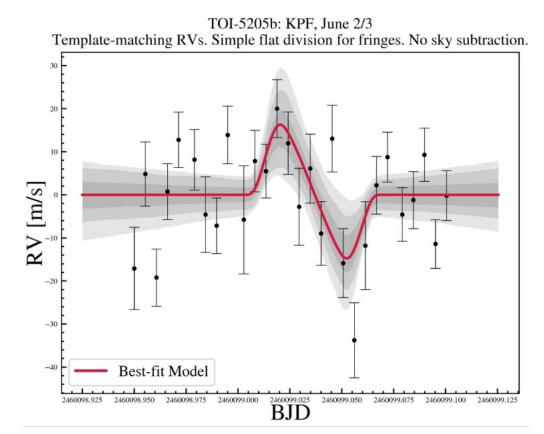
KPF RRM, TOI4495

RM amplitude \sim 3 m/s, easily detected

Signal is ~400 ppm, one of the lowest ever recorded

Dai et al. (in prep); plot from S. Halverson

Keck Planet Finder



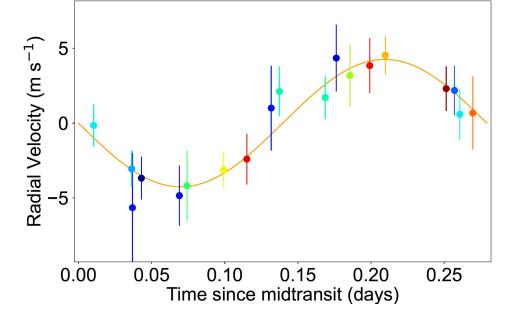
TOI-5205b:

First Hot Jupiter around M dwarf

Obliquity Measurement with KPF Upcoming JWST atmos. observ.

Very faint: V = 15.9 ! (most signal comes from red optical spectrum)

Stefansson et al. (in prep)


W. M. KECK

TOI-6324b:

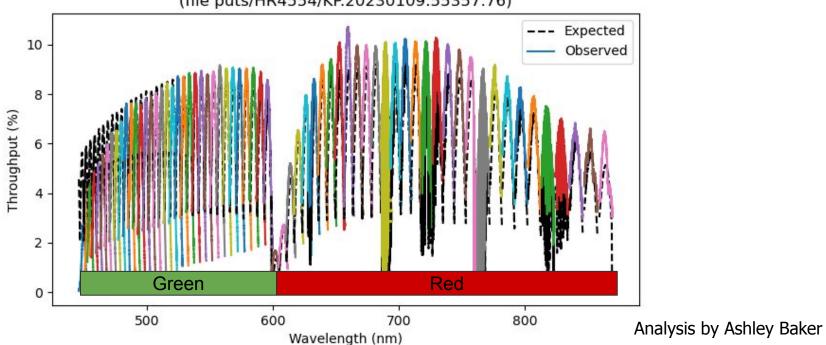
Earth-size planet (1.0 Earth-radii) ultrashort-period orbit (0.28 days) RVs are phasing up! \rightarrow

Excellent JWST target to determine surface mineralogy

part of ongoing NASA KSMS program; PI: Fei Dai

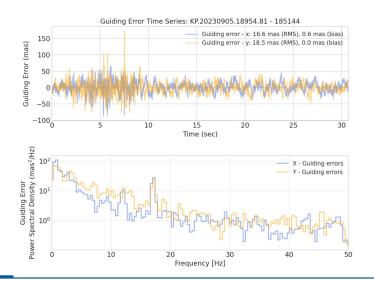
Dai et al. (in prep)

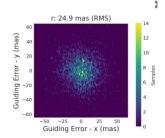
Mid-breakout Q&A

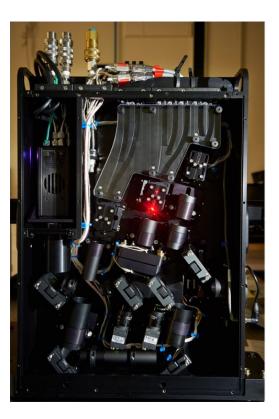

Part II Topics:

Performance Proposal Planning Observing with KPF Current Challenges and Plans

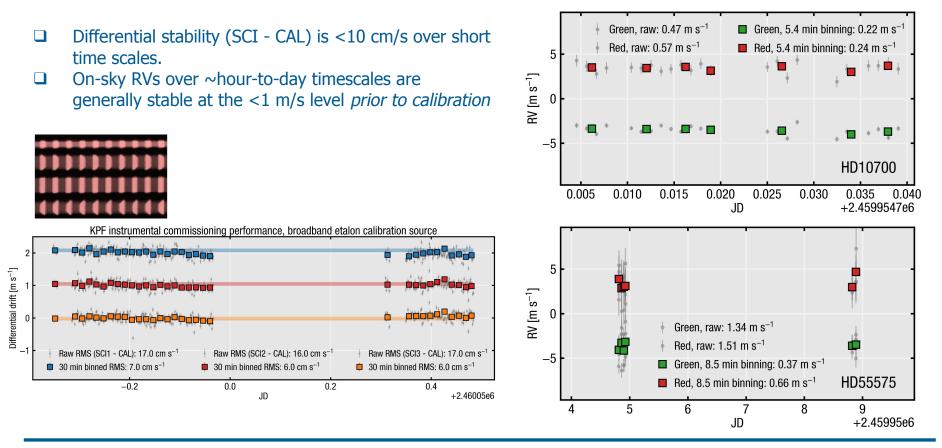
Overall throughput is meeting (or exceeding!) expectations across the bulk of the spectrum.
 Blue throughput is lower than expected. ADC is possibility, as we have yet to verify the prism angles.




HR4554 (seeing=0.58) (file puts/HR4554/KP.20230109.55357.76)

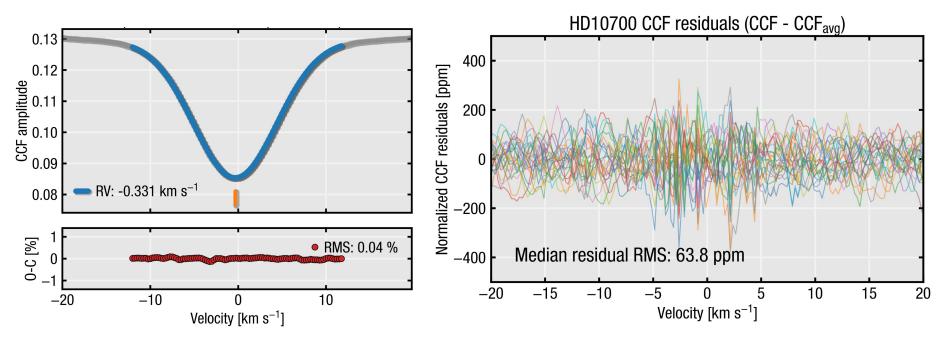

- □ FIU guider performance is beating requirements on most targets.
 - Guiding precision of <20 mas RMS routinely achieved
 - Guiding accuracy still to be quantified in 2023B
 - Tested guiding to J ~ 14 mag.
 - Guiding on close binaries is currently challenging work in progress
- □ Overheads are 4 min (average) and **readout is 48 seconds**, fast readout is ~15 seconds.
- Outstanding issues related to ADC performance are being assessed in 2023B

- J = 3.42, G = 4.45 100 fps, Medium gain
- 3071 guider frames. Fraction with: saturated pixels: 1.17% pixels at >90% saturation: 2.70%


Sun's altitude below horizon = 10 degLunar separation = 83 deg

Keck Planet Finder

KPF Performance – Doppler Performance



nder

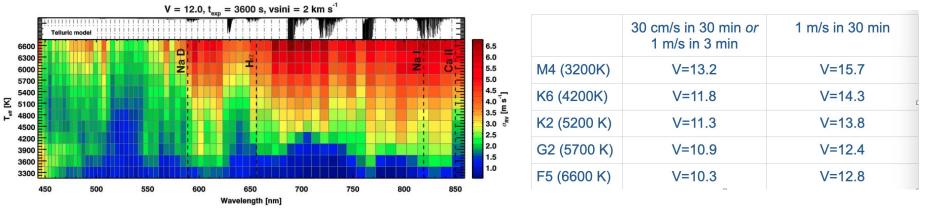
KPF Performance – Doppler Performance

W. M. KECK OBSERVATORY

- Demonstrated PSF stability is at the 10's of ppm level over short time periods.
 - Key for obliquity measurements, transit spectroscopy, stellar activity mitigation

nder

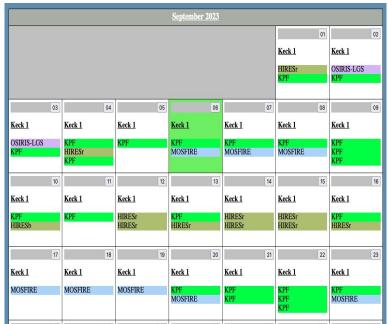
- □ Multi-week performance is limited by wavelength solution derivation, drift correction capability
- □ Current DRP does not reliably derive daily wavelength solutions
- □ Instantaneous instrumental drifts are being computed, but not being applied due to uncertainty in calibration source stability. (coupled with wavelength solution algorithmic issues)
- Data to make this measurably better <u>already exist.</u>



Planet Finder Proposal Planning - Doppler Precision

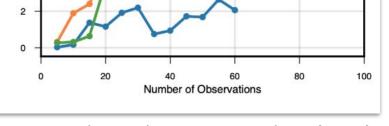
- □ The **Exposure-Time-Calculator** offers a simple way to calculate KPF exposure time as function of radial velocity precision based on the KPF noise model, and information content of stars by spectral type.
- Radial velocity uncertainties for single-night projects (Rossiter-McLaughlin or other in-transit observations) have minimum uncertainties of 50 cm/s per observation.
- Radial velocity drift over months-long timescales is ~1.6 m/s. *We expect this to improve significantly in 2023B.*
- □ Note difference between single-night and multi-night performance.

$$\sigma_{\rm total}^2 \approx \sigma_{\rm photon}^2 + \sigma_{\rm instrument}^2 + \sigma_{\rm stellar\,activity}^2$$



https://github.com/California-Planet-Search/KPF-etc

- KPF observing is open to all Keck users. The California Planet Search (CPS) currently organizes most KPF observing, using algorithm-based starlist generation to maximize efficiency and observing cadence. Observing with CPS is not required.
- □ KPF allows for an <u>easier observing</u> setup compared to HIRES by moving more preparation to the daytime.
- Real-time data processing allows for immediate identification of sub-system functionality.
- □ We encourage collaborators to request *fractional nights* (¼, ½, ¾) spread across more nights to improve our ability to make cadence observations.
- □ Sometime in the future, we intend to hand-off the capability to perform **Community Cadence** observing to Keck Observatory.


KPF Observing - Community Cadence

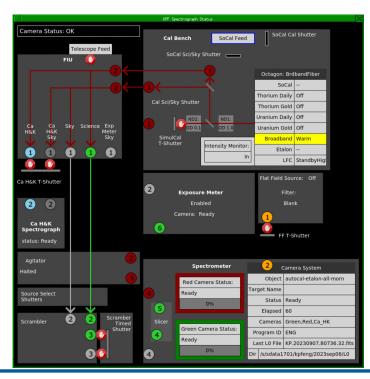
10

8

6 M / σ M

- Future observations will maximize the number of fractional nights available to KPF, more observations can be taken over shorter timescales allowing for improved planet mass measurements.
- Variations on the stellar surface that cause increased RV noise will be minimized and planet mass precision will be maximized.
- Complex orbital architectures such as planets with high eccentricity and multi-planet systems will be more and more capable of detection as the cadence increases.

Improved Mass determination with CC (green) compared to current practice (orange)


Ande C

Current Nighttime Observing

- □ Currently nighttime observations are done by classical observers to achieve cadence by collaborating.
- □ The mechanics of KPF observing is highly scripted (OBs, etc.) and are part of the future of WMKO.
- At the base through, this is similar in execution to other Keck instruments (VNC/observing sites; GUIs; etc.)

Current Script: None Expose Status:			Ready Time Since Cal: 3.3 hrs		ne Since Cal: 3.3 hrs	
Request Script STOP No STOP Exposure and Script			Object Value: Lamps:		Slew Cal: EtalonFiber Disabled Detectors:	
Science OB Calibra	tion OB					
Construct a S	cience OB		[
Load OB from File Wri		Write OB to File			Estimated Duration: 3 min	
Get Target Info from	n Query			te This OB	Execute OB with Slew Cal	
Generic Name: Query Na		Query Name	Collect Guider Image Cube			
Gaia DR3 ID: Query Gaia ID		Execute Slew Cal Only				
OB Contents						
Target Info			Spectrograph Set	tup		
Target Name:		User supplied name	TriggerCaHK:	✓		
GaiaID:		Gaia DR3 ID	TriggerGreen: TriggerRed:	✓ ✓		
2MASSID:		2MASS ID				
Parallax:		mas	First Observation	Sequence		
RadialVelocity:		km/s	Object:		OBJECT for FITS header	
Gmag:		Gaia G magnitude	nExp:	1	number of exposures	
Jmag:		2MASS J magnitude	ExpTime:	10	exposure time in seconds	
Teff:		к	ExpMeterMode:	monitor	¥	
Guider Setup			ExpMeterExpTime:	0.5	Set automatically?	
GuiderMode:	auto	*	TakeSimulCal:	✓ True		
GuiderCamGain:		 high, medium, or low 	CalND1:	OD 0.1	Set filters automatically	
GuiderFPS:	100	frames per second	CalND2:	OD 0.1	 Set filters automatically 	



	<u>KPF</u>	<u>HIRES</u>			
Optical Input	1.14 arcsec octagonal <i>fibers</i> for science and sky (fixed format)	Selectable <i>deckers and slits</i> for different sky projections, e.g., B5 = 0.87 x 3.5 arcsec; C2 = 0.87 x 14 arcsec			
Wavelength Coverage	Fixed format: 445-870 nm (high-res) 382-402 nm (med-res)	~300-1000 nm in an adjustable format (moving a 3 CCD array over the spectral format)			
Resolving Power	R=98k (445-870 nm)	depends on slit E.g., R=49k for 0.86 arcsec-wide slit R=80k for 0.40 arcsec-wide slit			
Throughput (sky to CCD)	~8-10% peak-of-blaze (measured)	5-6% peak-of-blaze for B5-B1 deckers (measured)			
Doppler Precision	0.5 m/s noise floor (req.) & 0.3 m/s (goal)	~2 m/s systematic noise floor			
Doppler Speed	~8-10x faster than HIRES	Limited by need for high SNR to model iodine spectrum			

- **KPF is never 'off'.** Reliable calibrations are essential for maintaining RV performance
 - Daily calibrations are automated, 2x per day. This includes flats, darks, biases, wavelength cals that are triggered at fixed times each day.
 - SoCal fills in gap between morning and evening calibrations.
- □ Telemetry is automatically collected and stored in FITS records

- **Calibration sources** (laser frequency comb, etalon, thorium-argon lamp) have imperfect reliability.
 - Plan for better software to model slow evolution of the wavelength solution vs. time
 - Expected improvements in the LFC operation (full calibration at the bluest wavelengths)
 - Planned testing of the etalon stability
- Data Reduction Pipeline currently produces all data products. Doppler performance within a night is superb, but the long-term Doppler scatter is not yet at full precision. Extensive work on the DRP is ongoing.
 - Wavelength solution code significant ongoing work to better model slow evolution using the multiple calibration sources
 - Cosmic-ray rejection in development
 - Forward-model approach to RV determination is under development needed for M dwarfs. RVs are currently computed with the cross-correlation method.
 - A Quality Control infrastructure was just built and is being deployed.
 - The optimal extraction algorithm is being refined.
 - We can use your help with DRP projects small and large!

- Small Refinements to Operations
- □ **Testing of Atmospheric Dispersion Compensator** in Fiber Injection Unit determine absolute guiding accuracy
- □ "Service Mission" ~3 weeks in December 2023 to February 2024 (to be scheduled)
 - Install thermal enclosure
 - Fix focus issue on edge of green CCD
 - Adjust "Reformatter" for more even slice shapes/intensities
 - Install baffling on ion pumps
 - Install precision wedge filters in calibration system for ultraprecise calibrations
 - Reminder: there will be an RV offset between pre/post Service Mission data! Plan accordingly!
- □ A **second fiber feed for KPF at Keck II** will improve cadence observations and make WMKO as a whole more efficient.